

1	Disentangling the Climate Divide with Emotional Patterns: a Network-Based Mindset
2	Reconstruction Approach
3	Authors: Roger Cremades ^{1,2,5} *, Massimo Stella ^{3,4,5} *.
4 5	¹ Wageningen University & Research, Hollandseweg 1, Wageningen 6700 HB, the Netherlands.
6 7	² Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany.
8 9	³ CogNosco Lab, Department of Computer Science, University of Exeter, EX4 4QF Exeter, UK.
10	⁴ Complex Science Consulting, Via Amilcare Foscarini, 2, 73100 Lecce LE, Italy.
11	⁵ Both authors contributed equally to this work.
12	*Correspondence to: roger.cremades@wur.nl and m.stella@exeter.ac.uk.
13	Abstract:
14	Extreme political populism has been fiercely spreading climate disinformation for years,
15	contributing to a social divide about climate change. In order to profile how both sides of the
16	climate divide communicate climate change, we collected dissemination materials and
17	analysed the mindset of key actors reaching global audiences. Here we show that applying
18	network science to textual content and analysing the emerging reconstructed mindset can
19	support the identification of emotional patterns linked to a quick and pervasive spread of
20	falsehoods — i.e. an infodemic — such as hypercritical scepticism masking falsehoods under
21	a trustful promotion of change. Climate represents a fearsome threat linked to inconsistent
22	science in climate change infodemics. Change represents a reassuring pattern characterized
23	by trust in climate infodemics, low anticipation without risk awareness, except for some fear
24	about policy changes. For climate activism change is linked to high levels of negative
25	emotions like anger, disgust and fear, related to a perception of existential threats.

- 26 Furthermore, children are an angering concern in climate infodemics, while climate change
- 27 activism perceives children with trust and joy, but sadness for their anticipated future.

28 Keywords:

- 29 Fridays for future, social movements, infodemics, climate change, revolution.
- 30 Main text:

31 1. Introduction.

- 32 The Intergovernmental Panel on Climate Change (IPCC) affirms that continued climate
- 33 change is directly impacting human lives, and that risks of injury, disease, and death increase

34 with heat waves, floods, droughts, and fires (Smith et al., 2014). However, contrasting

- 35 messages from extreme political populism have been fiercely spreading climate
- disinformation through social and news media for years (Demelle, 2016; Horton, 2020; Watts
 et al., 2019).
- 38 Climate denying political leaders across world regions —USA, Brazil, Australia, the
- 39 Netherlands are just visible elements of an evolving list of hundreds of influential players
- 40 and think tanks (Desmog, 2021). These think tanks repeatedly appear linked to events where
- 41 influencers take climate denying positions (Youtube, 2019), often these events run in parallel
- 42 to the Conferences of Parties (COPs) of the United Nations Climate Change Framework
- 43 Convention (UNFCCC). These annual COPs are the most important climate policy event
- 44 worldwide. When searching information about these UNFCCC COP events, content intended
- 45 to trigger a quick and pervasive spread of falsehoods i.e. an infodemic from events
- 46 organized in parallel by climate disinformation think tanks shows up in multiple media
- 47 channels, including in prominent video-sharing platforms (see Methods section).

- 48 These actors and think tanks have been polarizing the worldwide public opinion for decades,
- 49 amplifying the climate divide (Hoffman, 2011, Horton 2020). On one side of the climate
- 50 divide, climate change infodemics actively impedes "social consensus" about climate change.
- 51 Climate change infodemics actors (hereafter *climate infodemics*) disseminate misleading
- 52 information and downplay scientific evidence with the support of politically entrenched think
- 53 tanks (Demelle, 2016; Desmog, 2021; Horton, 2020).
- 54 On the other side of the climate divide, science-based climate change activism (hereafter
- 55 *climate activism*) outside the strict scientific domain demand action from policy makers while
- stressing the importance of climate science in society (Hoffman, 2011; Marris, 2019). While
- 57 environmental and climate activists are not a novelty, and while cohorts of teenagers and
- 58 students have been involved in the decarbonization of UK and US universities at least since
- 59 2010 (Healy & Debski, 2017), recently the #FridaysForFuture movement gained
- 60 unprecedented prominence demanding climate action from political leaders. The
- 61 #FridaysForFuture movement adheres to scientific consensus on climate change and
- 62 gathered remarkable media attention since 2019.

Social movements like #FridaysForFuture have been pointed out as instrumental for crossing a tipping point toward major changes of social norms and values that could contribute to stabilize Earth's climate (Otto et al., 2020). Information flows and the feedbacks they might activate are amongst the most important interventions to stabilize Earth's climate (Otto et al., 2020). The fear of Information flows and their related feedbacks activating social tipping dynamics towards decarbonization by certain think tanks provide a possible explanation for their interest on a climate infodemic polarization agenda.

The variety of actors involved in the climate divide is immense, and it is fully unclear what
underlying patterns could characterize the messages in both sides of this divide. In this

- 72 context, we structure our investigation as a comparison between key representatives in their
- ranks, i.e. individuals with outstanding character that managed to exhibit leadership in a
- 74 history of world-spanning events reaching millions of individuals.

75 To elaborate overarching strategies and understand the validity of proposals for tools dealing 76 with the climate divide, it is fundamental to explore the emotions inflaming this battle of 77 ideas, and to uncover weaknesses in the mindset embedded in the communication strategy of 78 those involved (Hoffman, 2011). The communication materials of individuals involved in the 79 climate divide can be expected to hold patterns leading to the identification of inflammatory 80 media content. Semantic patterns can be used to unveil emotionally distorted content linked 81 to polarization (Stella et al. 2018, Stella 2020). 82 In this article we aim to explore the emotional dimension of climate communication linked

the climate divide. Departing from this aim, we have specified the following objectives: First,
to explore how the mindset of key representatives of *#FridaysForFuture* and of climate
denying think tanks differ when communicating about climate. Second, to unveil emotionally
distorted content linked to polarisation in key climate disinformation communication events.
And third, to provide a scientific basis for unveiling infodemic content linked to the climate
emergency.

89 **2.** Methods.

90 Mindset reconstruction exposes the emotional backbone of language (Stella, 2020; Stella et 91 al., 2018). In order to profile how both sides of the divide communicate "climate change", we 92 collected communication materials related to climate change, and analysed the mindset of 93 selected actors who have been able to reach global audiences. The methodology is divided in 94 three consecutive steps: (i) identification of global key influencing figures of the climate

- 95 divide, (ii) data collection, (iii) application of network science methods for mindset
- 96 reconstruction and visual representation of the results.

97 **2.1. Identification of key figures.**

- 98 The identification of key figures is based on criteria of leadership and of a history of
- 99 contribution to global events in the respective networks of #FridaysForFuture and of climate
- 100 denying think tanks.
- 101 Greta Thunberg can be traced as the originator of the #FridaysForFuture. After her
- 102 innovative way of demonstrating gained prominence, her initially single-student protest
- 103 gained scale and lead to a global school strike movement. Afterwards, she gave speeches in
- 104 many global centres of power and meet with multiple global leaders. At the moment of
- 105 writing this article she is perhaps the only globally mediatic figure of this movement.
- 106 Christopher Monckton was ranked a top ten climate denier by Demelle (2016), and Desmog
- 107 (2021) mentions him in the context of multiple climate-related events and actions spanning
- 108 across world regions for more than a decade.

109 **2.2. Data collection.**

- 110 Data originates from to key public speeches directly or incidentally linked to international
- 111 bodies, national institutions, and diplomacy hubs. For example, a COP of the UNFCCC, the

112 UN, the World Economic Forum at Davos, the UK parliament, or climate infodemics

- 113 conferences.
- 114 The selected key public speeches reached broad audiences beyond the auditorium and have
- 115 been disseminated by multiple media channels, including television, newspapers, and video-
- 116 sharing platforms like Youtube (Youtube, 2019). In particular, we selected 11 public

- 117 speeches by Greta Thunberg from 2018 to 2020, and three much larger speeches in 2019 by
- 118 Christopher Monckton in events organised in Madrid in parallel to UNFCCC's COP 25, and
- 119 in a climate infodemics conference in Washington.
- 120 By using text from public speeches, we overcome the difficulties of preserving the privacy of
- 121 under-age citizens that are a known part of the #FridaysForFuture movement (Marris, 2019).

122 **2.3.** From words to mindset reconstruction with *forma mentis* networks.

- 123 The mental lexicon is an idealised system that acquires, stores, processes and produces
- 124 language (Vitevitch, 2019). The mental lexicon represents the structure of conceptual
- 125 associations in language as used by each individual. As a purely cognitive system, the mental
- 126 structure of conceptual associations in the lexicon can be extracted and analysed from
- 127 communication materials under the assumption of the individual's authorship.
- 128 Communication materials like texts are an open view to the mindset of the authors, which is a
- 129 proxy for the structure of language and its associations in the human mind (Teixeira et al.,
- 130 2021).
- 131 Forma mentis networks are a representation of the emotional content of the mental lexicon
- 132 and the relations between the meanings involved. We use *forma mentis* networks to show
- 133 how an individual person conceptually and emotionally structure their mindset about climate
- 134 change. Mindset reconstruction with *forma mentis* networks exposes the emotional backbone
- of language, and such exposure highlights the attitudes towards "climate change" fuelling theclimate divide (Figure 1, Text Box 1).
- 137 To build the *forma mentis* networks, syntactic networks are used as a proxy of the mental
- 138 lexicon. Relations between words come from syntactic and semantic dependencies in
- 139 speeches and written text (see the explanation of Equation 1 below), and neighbourhoods are

140	interpreted as semantic frames (cf. Stella 2020). Network neighbourhoods contain all words
141	syntactically and semantically related to a given target concept. According to frame
142	semantics in cognitive science (Fillmore & Baker, 2001), these associations contain key
143	insights about the meanings and emotions framing a given target concept in a specific way in
144	text. In this way, network neighbourhood encode contextual knowledge that indicates how
145	the same concept, e.g. "failure", can be framed in different ways within various narratives
146	(e.g. "failure is a disappointing experience" vs. "failure is a learning opportunity").
147	Then, emotional relations are computed on the basis of the NRC Emotion Lexicon, which is
148	the largest lexicon mapping emotions, going far beyond simple sentiment patterns
149	(Mohammad & Turney, 2013). The words in the <i>forma mentis</i> networks also identify their
150	key concepts in the analysed speeches with the size of the words (see Figure 1), larger words
151	were represented as possessing a higher closeness centrality in the speeches (see Formula 1).
152	Closeness centrality is defined as the inverse average distance between a word and all its
153	neighbours (Metcalf & Casey, 2016). A previous study (Stella, 2020) showed that closeness
154	centrality is able to identify prominent concepts of short texts, i.e. the main concepts
155	providing grounding to a short narrative. This motivates our choice to use closeness centrality
156	as an estimator for concept prominence in texts. Eq. (1) is used for calculating the closeness
157	centrality (Metcalf & Casey, 2016) of each concept:

$$C(v) = \sum_{w \in G} \frac{N-1}{d(v,w)}$$
(1)

159 Where:

160 C is the closeness centrality for each node in the graph G, in this case a network made of
161 words from speeches and written text, where links indicate syntactic (e.g. "pen" – "table" in
162 the sentence "the pen is on the table") and synonym relationships (e.g. "nice" and "good"
163 overlap in meaning in the sentence "you are nice and good").

- 164 G is the whole network, which includes words (nodes) and semantic and syntactic links as
- 165 extracted from all sentences in a speech/text.
- 166 v is the node in the graph G, which in our case is a word in a speech or written text; the
- 167 closeness centrality is computed for this *v* node.
- 168 *w* represents any other node in the graph G.
- 169 N is the number of nodes in the graph G.
- 170 *d* is the shortest path network distance, i.e. the smallest number of links between nodes
- 171 (words) *v* and *w* in the graph G.

172 3. Results.

- 173 As detailed in the Methodology above, mindset reconstruction exposes the emotional
- 174 backbone of language (Stella et al. 2018, Stella 2020). Such exposure importantly allows to
- 175 highlight the attitudes towards "climate change" that fuel the climate divide. In order to
- 176 profile how both sides of the divide perceive "climate change", we illustrate their emotional
- and semantic patterns in Figures 1-4 and Text Box 1, accompanied in Appendix A by Figures
- 178 A1-A12. Overall, here we show that speeches in climate activism rely mostly of trust and
- 179 hope with links to anger, while climate infodemics shows clear patterns of hypercritical
- 180 misinformation masked under trust-inspiring content.

Figure 1. Speakers' mindset reconstruction around "climate" (top) and "change" (bottom) in
the speeches of Greta Thunberg (left) and Christopher Monckton (right). Links indicate

syntactic and semantic relationships between words in speeches. Links are coloured if linking at least a positive/negative/neutral/synonyms (blue/red/grey/green) word. Blue/red/black (positive/negative/neutral) coloured words indicate how they are perceived in language according to the NRC Emotion Lexicon (see Methods). Font size expresses the relative importance of the words reflecting their centrality in the speeches. Emotions are selfexplanatory except for anticipation, which is a projection into future expectations (cf. Stella 2020). We refer the reader to Text Box 1 for an interpretation of the figure.

Figure 2. Speakers' mindset reconstruction around "Children" in the speeches of Greta
Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a
detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

197

Figure 3. Speakers' mindset reconstruction around "Scientist" in the speeches of Greta Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

Figure 4. Speakers' mindset reconstruction around "live" in the speeches of Greta Thunberg
(left) and Christopher Monckton (right). We refer the reader to Figure 1 for a detailed
explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

207

208 Text Box 1: A lexicon of the climate divide, with the associated emotions in both sides.

209	Action: for climate activism it means hope for a better future, much wanted and needed,
210	propositional toward the elicitation of a revolution-like call to action, while for climate
211	infodemics it is just a sad bureaucratic cost, still something positive but that does not lead to
212	any practical safeguarding initiative (Figures A5 and A10, see Appendix A).
213	Believe: climate infodemics angrily believes there is scarce contradictory evidence, while
214	climate activism' beliefs are strongly propositional about setting goals to avoid the danger of
215	inaction (Figure A6, see Appendix A).

216	Change: for climate infodemics there is a pattern characterized by trust, low anticipation
217	without risk awareness, overall a perception of "change" that is reassuring, there is no sense of
218	threat, no problem at all, except for some fear about policy changes. For climate activism
219	change is linked to high levels of negative emotions like anger, disgust and fear, related to a
220	perception of existential threats (Figure 1).
221	Children: an angering concern for climate infodemics. Climate activism perceived children
222	with trust and joy, but sadness for their anticipated future (Figure 2).
223	Climate: a fearsome threat, linked to inconsistent science for climate infodemics or to scary
224	tipping points for climate activism (Figure 1).
225	<i>Future</i> : relatively absent in climate disinformation, it inspires trust linked to future awareness
226	in climate activism (Figure A8, see Appendix A).
227	Ignore: a large and central concept for climate activism, counterfactually associated to trust on
228	that people will come to let change happen. Ignore is only peripheral for climate disinformation
229	and linked to trust on the potential profits of global warming (Figure A7, see Appendix A).
230	Leader: someone to trust and follow in climate disinformation, but who triggers anger linked
231	to "politicians" and "emissions" in climate activism, and still inspires trust (Figure A9, see
232	Appendix A).
233	Live: climate activism uses this term carefully, associating "live" to trust to conditions of
234	human survival and planetary justice, while climate disinformation does not display a coherent
235	pattern (Figure 4).
236	Number: climate activism stays positive and lacks objections to numbers coming from current
237	science, while climate disinformation displays an opposite pattern of strong anxiety projecting

238	into the future a sense of exaggerated imbalance on the issues at hand (Figure A11, see
239	Appendix A).
240	Science: inspiring mostly negative emotions of anger, disgust and fear to climate
241	disinformation, it is a matter of trust associated to listening and numbers for climate activists
242	(Figure A1, see Appendix A).
243	Scientist: isolated prophets that provide facts for narratives of climate disinformation around
244	changes in solar radiation and that are a source of anticipation. Instead, for climate activism
245	they are people that politicians need to listen to, experts that solve problems (Figure 3).

247	In their promoted mindsets, climate infodemics resorts to a wide variety of trust-related
248	semantic associates reducing scientists to isolated prophets that provide alternative facts,
249	which they relate to infodemic attempts to convince the public with alternative scientific
250	evidence on global warming. Despite presenting alternative facts, negative emotional
251	associations with "climate" such as "hysteria" and "catastrophe" are only present in the
252	climate infodemics side, while climate activism gives more relevance to "breakdown",
253	"danger" and "threat" (Figure A3, see Appendix A).
254	Anticipation, a projection into the future of both anxiety and excitement, is a stronger
255	emotion for climate activism around concepts of "leadership", "listen" (Figure A2, see
256	Appendix A), "children" and "threat". Climate infodemics concentrates anticipation toward
257	"studies" and "numbers", due to the anxiety that scientific facts create to the climate
258	infodemics community. The emotion of surprise is linked to "children" and "future" (Figure
259	A8, see Appendix A) for climate activism, while climate infodemics associates it to the

- 260 "numbers" behind climate science. Sadness is very strong in the climate activism arena for

- 261 concepts like "children", "action", or "believe", and appears also linked to "future",
- 262 "climate", "leader", and "live".
- 263 Climate infodemics displays high levels of sadness only around the term "believe". Joy is
- counterfactually high for terms like "children" and "action" in climate activism, which can be
- explained by the emotions of hope and sense of belonging to a growing group (Lerner, 2015).
- 266 Trust, an emotion strongly used by outstanding visionary leaders (Mumford, 2006), is
- 267 consistently high for climate activists, with very high values associated to its science-based
- 268 grounds. Instead, climate infodemics projects trust toward future-centered terms like
- 269 "change", "live", and "study" (Figure A12, see Appendix A), linked to reports with
- alternative facts from their own dissemination activities.
- 271 Fear is higher for terms like "climate change", "threat", "issue" (Figure A4, see Appendix A),
- 272 and "believe" in climate activism, while for climate infodemics appears very intense against
- 273 "children". Anger again is linked to "children", and also "believe", in climate infodemics,
- while for climate activism anger is associated to "climate change" and "leader". Last but not
- 275 least, disgust appears linked to how much both sides "ignore" each other.

276 Figure 1 (top left) illustrates that climate activism perceived "climate" as overwhelmed by the 277 threat of climate breakdown, whereas climate infodemics associated "climate" with neutral 278 concepts expressing 'inconsistent science' (top right). Such dichotomy reverberates in the 279 mental construct of "change", a neutral concept by itself in common language. In climate 280 activism, "change" was associated to concepts strongly eliciting anger and fear but also trust, 281 an emotion identifying outstanding visionary leaders (Mumford, 2006). Climate activism 282 gave relevance to "breakdown", "danger" and "threat", concepts characterising charismatic 283 value-based mindsets (Mumford, 2006) and revolutionary speeches (Jasper 2011; Kramer et 284 al. 2014). Stunningly, in climate infodemics such threatened perception was completely

285	absent (Fig. 1, bottom left) and left space to a wide variety of trust-evoking associates about
286	attempts to convince the public with alternative facts on global warming.
287	Climate activism combines anger (towards inaction), fear (of an approaching threat) and trust
288	(in solving this crisis), and perceives "climate change" as an indispensable "call-to-action"
289	fight. This "call-to-action" is urgently motivated by a combination of emotions: anger against
290	political leaders, fear for the dangers of inaction and against existential climate threats,
291	disgust about a stolen future, and an overall ambition to act over climate change. This "call-
292	to-action" makes climate activism's mindset entwined to revolutionary emotions. In fact,
293	emotions like anger, hope and despair are well known to accelerate the social tipping
294	dynamics of large-scale social protests and revolutions (Jasper, 2011).
295	Furthermore, it is known that outstanding future-focused leaders, often promoters of such
296	revolutions, rely on emotional styles revolving around trust, joy and anticipation (Mumford,
297	2006), so that detecting these emotions in a future-oriented topic like climate change can
298	provide insights on how charismatic #FridaysForFuture can be. Cognitive and semantic
299	contagion require conscious information processing, e.g. interpretation and acceptance,
300	whereas emotional contagion can lead to a faster transfer of moods among people, involving
301	both implicit and explicit mechanisms. Positive emotions like trust and joy have been
302	reported to cause a "ripple effect", i.e., a "pandemic" or "tsunami" of massive contagion of
303	positive sentiment driving the social behaviour of the whole collective in synchrony
304	(Barsade, 2002). In other words, the emotions and perceptions linked to climate activism
305	have been described as rippling better through society, and thus reaching larger social
306	audiences (Jasper, 2011; Mumford, 2006), in comparison to the emotional profile adopted by
307	climate infodemics.

308	In fact, conceptual associations and emotions indicate that climate infodemics promotes
309	hypercritical skepticism, hiding under a generally trustful promotion of change and including:
310	(i) discussing numbers in terms of imbalanced exaggerations, (ii) referring to scientists in a
311	stereotypical way, i.e. isolated individuals that attempt to provide abstract, theoretical
312	evidence to climate infodemics, (iii) displaying negative emotions against children, and (iv)
313	showing fear against public policy interventions.
314	As reported in the semantic-emotional analysis around other concepts (see the lexicon
315	reconstructed in Text Box 1), climate infodemics displays high levels of sadness only around
316	the term "believe". Joy is counterfactually high for terms like "children" and "action" (Figure
317	A5, see Appendix A) in climate activism, which can be explained by the emotions of hope
318	and sense of belonging to a growing group (Lerner, 2015).
319	These hypercritical attitudes disrupt public awareness on the climate emergency and
320	compromise public consensus to stabilize Earth's climate (Bloodhart, 2019). They prevent
321	policy-makers from acting over the risks posed by climate change (Hoffman, 2011; Watts et
322	al. 2020). Thus, they obstruct the Paris Agreement and the formation of foreseen social
323	tipping dynamics towards decarbonization (Otto et al. 2020).
324	4. Discussion and Conclusion.
325	We have shown that applying network science to textual content and analysing the emerging
326	mindset can support research about infodemics, i.e. the quick and pervasive spread of

- 327 falsehoods. We have identified infodemic emotional patterns, such as hypercritical scepticism
- 328 masked under a trustful promotion of change. The reconstructed mindsets and the emotional
- 329 patterns identified provide new pointers on climate infodemics.

330	Climate infodemics sustain a chain reaction triggering a major divide at the global scale,
331	which threats sustainability, human health and ultimately the global economy (Hoffman,
332	2011). Infodemics strongly depend on their emotional and perceptual content, much alike
333	viruses spreading across populations according to their genetic information. Recent studies
334	highlighted how contagions of distorted perceptions and misinformation greatly influence
335	human responses to the climate threat (Bloodhart, 2019).
336	Emotions and their contagion, much alike a pathogen spreading over societies (Kramer et al.
337	2014), have been instrumental in large-scale societal changes like revolutions from Maoist
338	China to Nicaragua and Czechoslovakia (Jasper, 2011), and are instrumental in the process of
339	emergence of charismatic social and political leaders (Mumford, 2006). Nevertheless, the
340	parallelism in the emotional patterns of a revolution could be just anecdotal. As a matter of
341	fact, the call to action by #FridaysForFuture is limited to policy-making. And objectively, the
342	movement often finds a "glass ceiling" about how they could trigger change beyond their
343	demonstrations and judicial actions (Neubauer, 2019).
344	Tracing this emotional parallelism with massive social movements is important because
345	recent calls to civil disobedience by leading climate diplomats (Figueres and Rivett-Carnac,
346	2020) could create game-changing developments if related to large-scale emotional
347	contagions, but could be hindered by infodemics. These interactions between propelling and
348	hindering factors points us towards future work on the opinion dynamics of the climate
349	divide, within and between sides.
350	We conclude that mindset reconstruction could be an important tool to deal with infodemic

351 communication materials facilitating the climate divide. Mindset reconstruction of textual

352 content provides a scientific basis for detecting climate-related hypercritical attitudes and

353 fuelling discourses. Hence, mindset reconstruction could help to design strategies narrowing

- the climate divide by countering infodemics in climate-related communication. The
- 355 innovative techniques we have shown at the fringe of AI and cognitive science could
- 356 support climate policy, e.g. by being applied to flag online communication materials with
- 357 infodemic content. Further work includes the automated training of cognitive tools for in-
- 358 vivo flagging online infodemic content in several languages, and the study of their influence
- 359 on the opinion dynamics of pro-active climate debates.

360 Acknowledgments:

- 361 The authors thank the organisers of the Winter Workshop on Complex Systems, editions
- 362 2019 and 2020, and gratefully acknowledge the feedback received at the Conference on
- 363 Complex Systems 2020.

364 Author contributions:

- 365 R.C. and M.S. envisioned the study. M.S. and R.C. collected the data and analysed it. R.C.
- and M.S. drafted the manuscript.

367 REFERENCES

- 368 Aitchison, J., Words in the Mind, Blackwell Publishing (2012).
- 369 Bloodhart, B., Swim, J.K. and Dicicco, E., (2019). "Be Worried, be VERY Worried:"
- 370 Preferences for and Impacts of Negative Emotional Climate Change Communication.
- 371 Frontiers in Communication, 3, p.63.
- 372 Demelle, B. (2016). "Before the flood. Top 10 Climate Deniers"
- 373 https://www.beforetheflood.com/explore/the-deniers/top-10-climate-deniers/
- 374 (accessed March 2020).

375	Desmog (2021). "An extensive database of individual climate deniers involved in the global
376	warming denial industry." https://www.desmogblog.com/global-warming-denier-
377	database (accessed March 2020).
378	Fillmore, C. J., & Baker, C. F. (2001, June). Frame semantics for text understanding. In
379	Proceedings of WordNet and Other Lexical Resources Workshop, NAACL (Vol. 6).
380	Healy, N., & Debski, J. (2017). Fossil fuel divestment: Implications for the future of
381	sustainability discourse and action within higher education. Local Environment, 22(6),
382	699-724.
383	Hoffman, A. J. (2011). The growing climate divide. Nature Climate Change, 1(4), 195-196.
384	Horton, R. (2020). Offline: Facts are not enough. The Lancet, 395(10224), 546.
385	Jasper, J. M. (2011). Emotions and social movements: Twenty years of theory and research.
386	Annual Review of Sociology, 37, 285-303.
387	Kramer, A. D., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-
388	scale emotional contagion through social networks. Proceedings of the National
389	Academy of Sciences, 111(24), 8788-8790.
390	Lerner, J. S., Li, Y., Valdesolo, P., & Kassam, K. S. (2015). Emotion and decision making.
391	Annual review of psychology, 66, 799-823.
392	Marris, E. (2019). Why young climate activists have captured the world's attention. Nature,
393	573(7775), 471-473.
394	Metcalf, L., & Casey, W., in Metcalf, L., & Casey, W. (2016). Chapter 5 – Graph theory.
395	Cybersecurity and applied mathematics, 67-94.
396	Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word-emotion association
397	lexicon. Computational intelligence, 29(3), 436-465.

398	Mumford, M. D. (2006). Pathways to outstanding leadership: A comparative analysis of
399	charismatic, ideological, and pragmatic leaders. Lawrence Erlbaum Associates
400	Publishers.
401	Neubauer, L. (2019) Personal communication (03.07.2019). Earth League's annual scientific
402	symposium 2019 "Towards a 1.5 °C world: Challenges and Solutions" held at the
403	Climate Service Center Germany, Hamburg, Germany.
404	Otto I. M., Donges J. F., Cremades R., Bhowmik A., Hewitt R. J., Lucht W., Rockström J.,
405	Allerberger F., McCaffrey M., Doe S.S., Lenferna A. (2020). Social tipping dynamics
406	for stabilizing Earth's climate by 2050. Proceedings of the National Academy of
407	Sciences: Feb 4;117(5):2354-65.
408	Smith, K.R., A. Woodward, D. Campbell-Lendrum, D.D. Chadee, Y. Honda, Q. Liu, J.M.
409	Olwoch, B. Revich, and R. Sauerborn, 2014: Human health: impacts, adaptation, and
410	co-benefits. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A:
411	Global and Sectoral Aspects. Contribution of Working Group II to the Fifth
412	Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B.,
413	V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee,
414	K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S.
415	MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press,
416	Cambridge, United Kingdom and New York, NY, USA, pp. 709-754.
417	Stella (2020). Text-mining forma mentis networks reconstruct public perception of the STEM
418	gender gap in social media, PeerJ Computer Science, 6 (295).
419	Stella, M., Ferrara, E., & De Domenico, M. (2018). Bots increase exposure to negative and
420	inflammatory content in online social systems. Proceedings of the National Academy
421	of Sciences, 115(49), 12435-12440.

- 422 Teixeira, A. S., Talaga, S., Swanson, T. J., & Stella, M. (2021). Revealing semantic and
- 423 emotional structure of suicide notes with cognitive network science. Scientific reports,
- 424 11(1), 1-15.
- 425 Vitevitch, M., Network Science in Cognitive Psychology, Routledge (2019).
- 426 Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Belesova, K., Boykoff, M., ... &
- 427 Chambers, J. (2019). The 2019 report of The Lancet Countdown on health and climate
- 428 change: ensuring that the health of a child born today is not defined by a changing
- 429 climate. The Lancet, 394(10211), 1836-1878.
- 430 Youtube (2019). "Rebutting the Climate Delusion of the UN in Madrid" (sic).
- 431 Https://www.youtube.com/watch?v=a3W8EVEEKQ8 (accessed January 2022).
- 432
- 433

Appendix A.

Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a 437 438 detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

441 Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a
442 detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

445 Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a
446 detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

449 (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a detailed

450 explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

452 Figure A5. Speakers' mindset reconstruction around "action" in the speeches of Greta
453 Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a
454 detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

Figure A6. Speakers' mindset reconstruction around "believe" in the speeches of Greta
Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a
detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

460 Figure A7. Speakers' mindset reconstruction around "ignore" in the speeches of Greta
461 Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a
462 detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

463

466 Figure A8. Speakers' mindset reconstruction around "future" in the speeches of Greta
467 Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a
468 detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

472 Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a

473 detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

475 Figure A10. Speakers' mindset reconstruction around "act" in the speeches of Greta Thunberg
476 (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a detailed
477 explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

Figure A11. Speakers' mindset reconstruction around "number" in the speeches of Greta
Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a
detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.

Figure A12. Speakers' mindset reconstruction around "study" in the speeches of Greta
Thunberg (left) and Christopher Monckton (right). We refer the reader to Figure 1 for a
detailed explanation of the colour code, and to Text Box 1 for an interpretation of the figure.